Greedily Computing Associative Aggregations on Sliding Windows

David Basina, Felix Klaedtkeb, Eugen Zălinescua,∗

aInstitute of Information Security, ETH Zurich, Switzerland
bNEC Europe Ltd., Heidelberg, Germany

Abstract

We present an algorithm for combining the elements of subsequences of a sequence with an associative operator. The subsequences are given by a sliding window of varying size. Our algorithm is greedy and computes the result with the minimal number of operator applications.

Keywords: sliding window, associative aggregation operator, on-line algorithm, complexity, optimality

1. Introduction

Problem Statement. Let \(\oplus : D \times D \rightarrow D \) be an associative operator over a nonempty set \(D \). Consider a sequence \(\bar{a} = (a_1, \ldots, a_n) \) of elements in \(D \), with \(n \geq 1 \). A window \(w \) in \(\bar{a} \) is a pair \((\ell_w, r_w) \) with \(1 \leq \ell_w \leq r_w \leq n \). We call \(\ell_w \) and \(r_w \) the \(w \)'s left and right margin respectively. We omit the subscript \(w \) when it is unimportant or clear from the context. Moreover, we write \(\oplus_w(\bar{a}) \) for \(a_{\ell_w} \oplus a_{\ell_w+1} \oplus \cdots \oplus a_r_w \).

We consider the following problem in which the number of applications of the \(\oplus \) operator should be minimized.

Input: A nonempty sequence \(\bar{a} \) of elements in \(D \) and a sequence \(\bar{w} = (w_1, \ldots, w_k) \) of windows in \(\bar{a} \), with \(\ell_{w_1} \leq \ell_{w_2} \leq \cdots \leq \ell_{w_k} \) and \(r_{w_1} \leq r_{w_2} \leq \cdots \leq r_{w_k} \).

Output: The sequence \((\oplus_{w_1}(\bar{a}), \oplus_{w_2}(\bar{a}), \ldots, \oplus_{w_k}(\bar{a})) \).

This minimization problem is motivated by settings where \(\oplus \)'s computation is expensive, for example, when multiplying large matrices, or when taking the union of large finite sets or determining their minimum. This problem arises, for example, when evaluating queries in system monitoring and stream processing, where \(\oplus \) is used to aggregate values on windows sliding over data streams.

A straightforward but suboptimal algorithm is to compute \(\oplus_{w_i}(\bar{a}) \) for each window \(w_i \) separately. It is easy to see that this algorithm applies the \(\oplus \) operator \(\sum_{i=1}^k (r_{w_i} - \ell_{w_i}) \) times. One can do better by sharing intermediate results between overlapping windows as the following example illustrates.

Example. Let \(D \) be the domain \(\mathbb{N} \) and \(\oplus \) integer addition. For the sequence \(\bar{a} = (2, 4, 5, 2) \) and the window sequence \(\bar{w} = ((1, 3), (1, 4), (2, 4)) \), the output is the sequence \((11, 13, 11) \). The straightforward algorithm applies the \(\oplus \) operator \(2 + 3 + 2 = 7 \) times. For this example, the minimal number of \(\oplus \) applications is 3, since integer addition is associative and commutative and the windows \(w_1 \) and \(w_3 \) contain the same integers. However, the minimal number is 4 if we just exploit the associativity of \(\oplus \).

Obviously, when computing \(\oplus_{w_1}(\bar{a}) \) we can reuse the result of the window \(w_1 \), since \(\oplus_{w_1}(\bar{a}) = \oplus_{w_2}(\bar{a}) \oplus a_4 \). If we compute the intermediate result \(h := a_3 \oplus a_4 \) when computing the result for the window \(w_2 \), we could reuse it for the window \(w_3 \), since \(\oplus_{w_3}(\bar{a}) = a_2 \oplus h \). Note that we do not have \(h \) as an intermediate result when computing the results of the previous windows \(w_1 \) and \(w_2 \) as \((a_1 \oplus a_2) \oplus a_3 \) and \((a_1 \oplus a_2) \oplus (a_3 \oplus a_4) \), respectively. In case we compute the results of the windows \(w_1 \) and \(w_2 \) as \(a_1 \oplus (a_2 \oplus a_3) \) and \(a_1 \oplus (a_2 \oplus (a_3 \oplus a_4)) \), \(h \) is available for the result of the window \(w_3 \). However, in this case, the computation of the result of the window \(w_2 \) does not use the result of the first window. So how we parenthesize \(a_1 \oplus a_{i+1} \oplus \cdots \oplus a_j \) is important when computing the result of a window. This choice has an impact on whether we can reuse intermediate results for other windows.

Contributions. In this article, we present an efficient algorithmic solution to this problem. Our algorithm, which we present in Section 2 and name SWA, processes the windows iteratively and reuses intermediate results from previously processed windows. SWA is greedy in the sense that it minimizes for each window the number of \(\oplus \) applications.

In Section 3 we prove SWA’s correctness and in Section 4 we show that it has linear running time in the length of the input sequence \(\bar{a} \). In Section 5 we prove SWA’s optimality with respect to minimizing the number of \(\oplus \) applications. We conclude in Section 6 by discussing applications and related work.

∗This work was partially supported by the Zurich Information Security and Privacy Center (ZISC).

∗Corresponding author.

Preprint submitted to Elsevier

October 2, 2014
Figure 1: Instance of the tree data structure used by the algorithm to store intermediate results.

2. Algorithm

We present our sliding window algorithm SWA in a functional programming style, close to the OCaml programming language [7]. To simplify the exposition, we fix the associative operator \(\oplus : D \times D \to D \) and the input sequence \(\bar{a} = (a_1, \ldots, a_n) \), i.e., we treat \(\bar{a} \) as global variables. Our pseudo code can easily be modified so that \(\oplus \) and \(\bar{a} \) are algorithm parameters. Furthermore, we assume that we can access \(\bar{a} \)'s element at any position \(i \in \{1, \ldots, n\} \) in constant time.

SWA uses binary ordered trees to store and reuse intermediate results, which are updated when iteratively processing the window sequence \(\bar{w} \). Figure 1 shows the tree that SWA builds for the window \(w_2 = (1, 4) \) for the input from the example in the introduction. Generally, the polymorphic datatype of these trees is

\[
\text{type 'a intermediate} = \text{a option node tree}
\]

where

\[
\begin{align*}
\text{type 'b node} &= \{ \ell : \text{N}; r : \text{N}; v : \text{'b}\} \\
\text{type 'c tree} &= \\
&\text{Leaf} \\
&\text{Node (} \text{('c * ('c tree) * ('c tree))}\)
\end{align*}
\]

Only the inner nodes of the trees are labeled (cf. the type definition of 'c tree). The content of an inner node (of the type 'b node), which we associate in the following to its subtree \(t \), is a record whose field values are denoted by \(\ell_t, r_t, \) and \(v_t \), respectively. The field values \(\ell_t \) and \(r_t \) are elements of \(\text{N} \), with \(1 \leq \ell_t \leq r_t \leq n \). They describe the elements of \(\bar{a} \) that are covered by the tree \(t \) and their combination \(\oplus(\ell_t, r_t)(\bar{a}) \) is the field value \(v_t \). If we know that the intermediate result \(\oplus(\ell_t, r_t)(\bar{a}) \) is not reused later, SWA does not store it to reduce memory usage. In this case \(v_t \) is actually None; otherwise, \(v_t \) is Some \(\oplus(\ell_t, r_t)(\bar{a}) \). We recall that the option type, used in the type definition of 'a intermediate, is defined as

\[
\text{type 'a option} = \text{None | Some of 'a}
\]

We lift the \(\oplus \) operator in the canonical way to this extended domain. For \(t = \text{Leaf} \), we define \(\ell_t := r_t := 0 \) and \(v_t := \text{None} \). Furthermore, we define the following function for extracting the children of a tree’s root:

\[
\begin{align*}
\text{fun children} \ t &= \text{match } t \text{ with} \\
&| \text{Leaf} \to \text{error "No children at leaf."} \\
&| \text{Node (_, _, t')} \to (t', t'')
\end{align*}
\]

We first define two basic auxiliary functions for creating and combining trees. The function atomic \(i \) builds the single-node tree \(t \) with \(\ell_t = r_t = i \) and \(v_t = \text{Some } a_i \).

\[
\begin{align*}
\text{fun atomic} \ i &= \text{Node } ((\ell = i; r = i; v = \text{Some } a_i), \text{Leaf, Leaf})
\end{align*}
\]

The function combine \(t' t'' \) builds the tree \(t \) with the left child \(t' \) and the right child \(t'' \), provided neither \(t' \) nor \(t'' \) is a leaf. The value at \(t' \)'s root is \(v_t' \oplus v_{t''} \). The field values \(\ell_t \) and \(r_t \) are obtained straightforwardly from the field values of its left and right children. If \(t' \) is the tree \(\text{Leaf then } t \) is \(t'' \). Analogously, if \(t'' \) is the tree \(\text{Leaf then } t \) is \(t' \).

\[
\begin{align*}
\text{fun combine} \ t' t'' &= \text{match } (t', t'') \text{ with} \\
&| (\text{Leaf, _}) \to t' \\
&| (_, \text{Leaf}) \to t' \\
&| (_, _) \to \text{Node } ((\ell = \ell_{t'}; r = r_{t''}; v = v_{t'} \oplus v_{t''}), \text{discharge } t', t'')
\end{align*}
\]

Note that in the case where \(t' \) and \(t'' \) are not the trees \(\text{Leaf} \), the value of the left child of the tree \(t \) is discharged by the homonymous function and becomes None.

SWA’s working horse is the function slide \(t w \). It updates the tree \(t \) for the window \(w \):

\[
\begin{align*}
\text{fun discharge} \ t &= \text{match } t \text{ with} \\
&| \text{Leaf} \to \text{Leaf} \\
&| \text{Node } ((n, t', t'') \to \text{Node } ((\ell = n; r = n; v = \text{None}), t', t''))
\end{align*}
\]

The auxiliary function \(\text{fun combine} \ t' t'' \) is discharged by the \(\text{discharge } t', t'' \)

\[
\begin{align*}
\text{fun slide} \ t w &= \\
&\text{let } ts = \text{atoms } (\text{max } \ell_w (r_w + 1)) r_w \\
&ts' = \text{reusables } t w \\
&\text{swap } f x y = f y x \\
&\text{in } \text{fold_left } (\text{swap combine }) \text{Leaf } (ts @ ts')
\end{align*}
\]

The auxiliary function \(\text{fun slide} \ t w \) returns the list of maximal subtrees \(t' \) of \(t \), for which the value \(v_{t'} \) is not used for computing the value \(\oplus(\ell_t, r_t)(\bar{a}) \). The function slide \(t w \) combines both these lists of trees into a single tree for the window \(w \) by folding the list \(ts @ ts' \), where \(@ \) denotes list concatenation. Note that we must swap the order of the arguments of combine when building the tree, since \(\text{atoms} \) and \(\text{reusables} \) add trees to the front of the lists they build. Intuitively, the head of these lists are at the right, the tails at the left, and the resulting tree is thus built from right to left. Recall that \(\text{fold_left } f a (b_1, \ldots, b_n) \) returns \(f(\ldots(f(f(a, b_1), b_2), \ldots), b_n) \).
Figure 2 shows the skeletons of the trees that SWA builds for the input sequence (2, 4, 5, 2) and the window sequence ((1, 3), (1, 4), (2, 4)).

(1) \(2 \ 4 \ 5 \ 2\)

(2) \(2 \ 4 \ 5 \ 2\)

(3) \(2 \ 4 \ 5 \ 2\)

Figure 2: Skeletons of the trees built by the slide function for the input sequence (2, 4, 5, 2) and the window sequence ((1, 3), (1, 4), (2, 4)).

3. Correctness

SWA obviously terminates. It successively processes the windows \(w_1, \ldots, w_k\) in the list \(ws\). In particular, the function iterate processes the window at the head of the window list \(ws\) and proceeds with the list's tail until it is empty.

We now prove partial correctness. A tree \(t\) is correctly shaped if the following conditions are satisfied, where \(l\) ranges over \(t\)'s non-Leaf subtrees and \(l'\) and \(l''\) are the left and right children of \(l\):

(S1) \(\ell_l \leq r_l\).

(S2) If \(\ell_l = r_l\) then \(l' = l'' = \text{Leaf}\).

(S3) If \(\ell_l < r_l\) then \(l', l'' \neq \text{Leaf}\), \(\ell_l = \ell_{l'}\), \(r_l = r_{l''}\), and \(r_{l'} + 1 = \ell_{l''}\).

A tree \(t\) is correctly valued if the following conditions are satisfied, where \(l\) ranges over \(t\)'s non-Leaf subtrees:

(V1) If \(v_l \neq \text{None}\) then \(v_l = \text{Some} \oplus (\ell_l, r_l)\) (\(\hat{a}\)).

(V2) If \(l\) is a right child then \(v_l \neq \text{None}\).

(V3) If \(l \neq \text{Leaf}\) then \(v_l \neq \text{None}\).

Note that while a tree that is correctly shaped has only correctly shaped subtrees, this might not be true for a correctly valued tree. A tree is valid if it is correctly shaped and correctly valued.

We prove the following lemma about the tree returned by slide \(t\) \(ws\), where \(w\) is the window for which we update the tree \(t\).

Lemma 1. Let \(w\) be a window and \(t\) a valid tree with \(\ell_t \leq \ell_w\) and \(r_t \leq r_w\). The tree \(t'\) returned by slide \(t\) \(ws\) is valid and \((\ell_{t'}, r_{t'}) = (\ell_w, r_w)\).

Proof. We first introduce the following notion. A list \(ts\) of trees is adjacent for \((\ell, r)\) with \(\ell, r \in \mathbb{N}\) if the following conditions are satisfied:

(L1) No tree in \(ts\) is Leaf.

(L2) If two trees \(t_1\) and \(t_2\) are next to each other in \(ts\) with \(t_1\) appearing before \(t_2\), then \(\ell_{t_1} - 1 = r_{t_2}\).

(L3) If \(ts \neq []\) then \(r_{t_1} = r\) and \(\ell_{t_2} = \ell\), where \(t_1\) is the first tree in \(ts\) and \(t_2\) is the last tree in \(ts\).

Note that the empty list is adjacent for any \((\ell, r)\). If the singleton list consisting of the tree \(t\) is adjacent for \((\ell, r)\) then \(t = t_1 = t_2\), where \(t_1\) and \(t_2\) are the trees in the condition (L3).

The lemma follows straightforwardly from the following facts about the functions that are used by slide \(t\) \(ws\) for building the tree \(t'\):

(a) The list returned by reusables \(t\) \(ws\) is adjacent for \((\ell_w, (r_1)\) and its elements are valid trees.

(b) The list returned by atomics (\(\max (\ell_w (r_1 + 1))\) \(w\) is an adjacent list for \((\max (\ell_w, r_1 + 1), w))\) and its elements are valid trees.

(c) Let \(ts\) be a nonempty list of valid trees, adjacent for \(w\). The tree \(t'\) returned by fold_left (swap combine) Leaf \(ts\) is a valid tree with \((\ell_{t'}, r_{t'}) = w\).

We only prove (a) and (c): (b) is obvious.

We prove (a) by induction over the size of \(t\). Note that all the elements of \(ts\) are correctly shaped since \(ts\) only contains subtrees of \(t\), which are correctly shaped. Similarly, properties (V1) and (V2) hold for the trees in \(ts\) because they hold for \(t\).

The base case \(t = \text{Leaf}\) is trivial, since the returned list \(ts\) is empty. For the step case, suppose that \(t \neq \text{Leaf}\). The cases where \(\ell_w > r_t\) and \(\ell_w = \ell_t\) are obvious, since \(ts\) is either the empty list or the singleton list consisting of the tree \(t\), respectively. For the other cases, we have that \(\ell_t < \ell_w \leq r_t\). Let \(t'\) be the left child of \(t\) and let \(t''\) be the right child of \(t\). For \(\ell_w \geq \ell_{t'},\) it follows from the induction hypothesis that the function reusables \(t''\) \(w\).
returns an adjacent list for \((\ell_w, r_w')\). This concludes the case since \(r_1 = r_{w'}\). For \(\ell_w < \ell_{w'}\), it follows from the induction hypothesis that \(\text{reusables } t'\) returns an adjacent list \(ts'\) for \((\ell_w, r_{w'})\). Putting \(t'\) at the front of \(ts'\) results in an adjacent list for \((\ell_w, r_1)\), because \(r_1' + 1 = \ell_w\) since \(t\) is correctly shaped. As \(t'\) is a right child and \(t\) is valid, we have from (V2) that \(w' \neq \emptyset\). It follows that (V3) holds for \(t'\) and therefore \(t''\) is correctly valued.

In the remainder of the proof, we show (e). We first remark that fold_left (swap combine) \(\text{Leaf } ts\) is equivalent to fold_left (swap combine) \(h ts'\), where \(h\) is the head of \(ts\) and \(ts'\) its tail. Note that \(ts'\) is an adjacent list for \((\ell_w, \ell_h - 1)\). We define \(r_{ts}\) as \(\ell_w - 1\) if \(ts'\) is the empty list and as \(t_r\) otherwise, where \(t_1\) is the first tree in \(ts'\).

It suffices to prove that for every valid tree \(z\) distinct from \(\text{Leaf}\) with \((\ell_z, r_z) = (r_{ts} + 1, r_{u})\), the tree \(s\) returned by fold_left (swap combine) \(z ts'\) is valid and \((\ell_s, r_s) = (\ell_w, r_{w})\). We use induction over the length of \(ts'\). The base case is trivial since \(s = z\). For the step case, suppose that \(h\) is the head of \(ts'\) and \(ts''\) its tail. Composing \(z\) with \(h\) results in a valid tree \(z'\) with \((\ell_{z'}, r_{z'}) = (\ell_h, r_z)\). The list \(ts''\) is adjacent for \((\ell_w, \ell_h - 1)\). As \(r_{w'} + 1 = \ell_h\), it follows that \((\ell_{z'}, r_{z'}) = (r_{ts'} + 1, r_{u})\). Using the induction hypothesis for fold_left (swap combine) \(z' ts''\) concludes the step case.

The SWA’s correctness follows easily from Lemma 1. Note that we assume that the given windows \(w_1, \ldots, w_k\) always slide to the right over the sequence \(a\), i.e., \(\ell_w \leq \ell_{w_{i+1}}\) and \(r_w \leq r_{w_{i+1}}\), for all \(i \in \{1, \ldots, k - 1\}\). Hence, in each iteration of SWA, the assumptions of Lemma 1 are satisfied.

Theorem 2. Let \(a\) be a nonempty sequence of elements in \(D\) and let \(w\) be the list consisting of the windows \(w_1, \ldots, w_k\). The function \(\text{sliding window } ws\) returns the list \((\oplus_{w_1}(a), \oplus_{w_2}(a), \ldots, \oplus_{w_k}(a))\).

4. Complexity

We now analyze the time and space that SWA uses. In doing so, we ignore the actual cost of applying the \(\oplus\) operator, i.e., we assume that its application takes \(O(1)\) time and space. We use the following notation. The size of a window \(w\) is \(|w| := r_w - \ell_w + 1\) and \(|t|\) denotes the size of the tree \(t\), i.e., the number of its subtrees. We denote by \(|s|\) the length of the list \(s\).

We first analyze the time and space required for a single iteration of SWA, i.e., to compute the tree \(t'\) returned by slide \(t w\), where \(w\) is a window and \(t\) is a valid tree with \(\ell_t \leq \ell_w\) and \(r_t \leq r_w\). To build the tree \(t'\), slide \(t w\) determines the list \(ts\) of single-node trees for the new elements in the window \(w\). This is done by atomics (max \(\ell_t (r_t + 1)\) \(r_w\) and takes \(O(|w|)\) time. The length of \(ts\) is at most \(|w|\).

Furthermore, slide \(t w\) determines the list \(ts'\) of subtrees of \(t\) that are reusable by executing \(\text{reusables } t\). The length of the list \(ts'\) is at most \(O(|w|)\), since each subtree in \(ts'\) covers at least one and distinct elements in \(w\). Since SWA visits each node in \(t\) at most once, it takes \(O(|t|)\) time to compute the list \(ts'\). Folding the concatenated list \(ts \oplus ts'\) takes \(O(|w|)\) time and space, resulting in the tree \(t'\) with \(|t'| \leq O(|w|)\). Overall, slide \(t w\) runs in \(O(|w| + |t|)\) time and space.

From this upper bound for a single iteration, we obtain for SWA the upper bounds \(O(km)\) for time and \(O(m)\) for space, when processing the windows \(w_1, \ldots, w_k\), where \(m := \max \{||w_i|| \mid 1 \leq i \leq k\}\). However, the upper bound on the running time does not take into account that SWA reuses intermediate results. We establish next a linear-time upper bound in the length of the input sequence, when the windows are pairwise distinct.

We fix SWA’s input: let \(a\) be a sequence of \(n \geq 1\) elements in \(D\) and \(w\) the list of windows \(w_1, \ldots, w_k\), with \(k \geq 1\) and \(w_i \neq w_{i+1}\), for all \(i \in \{1, \ldots, k\}\). Furthermore, let \(t_0, t_1, \ldots, t_k\) be the trees that SWA successively builds for the windows \(w_1, \ldots, w_k\), where \(t_0 = \text{Leaf}\). That is, \(t_i\) is the output of slide \(t_{i-1} w_i\), for \(i \in \{1, \ldots, k\}\).

Lemma 3. The number \(k\) of windows is in \(O(n)\).

Proof. Consider the relative movements of consecutive windows in the sequence, i.e., for \(i \in \{1, \ldots, k\}\), let \(\ell_i := \ell_{w_i} - \ell_{w_{i-1}}\) and \(r_i := r_{w_i} - r_{w_{i-1}}\), where \(\ell_w := r_w := 0\). Since the windows are pairwise distinct, we have that \(\ell_i > 0\) or \(r_i > 0\), for every \(i \in \{1, \ldots, k\}\). If \(k > 2n\) then \(\sum_{i=1}^k \ell_i > n\) or \(\sum_{i=1}^k r_i > n\), which contradicts \(\ell_w \leq r_w \leq n\). Hence \(k \leq 2n\).

The following lemma is key for establishing SWA’s complexity.

Lemma 4. The number of applications of the \(\oplus\) operator is in \(O(n)\).

Proof. The number of applications of the \(\oplus\) operator equals the number of calls to \(\text{combine}\) minus \(k\), because at each iteration there is exactly one call to \(\text{combine}\), namely the first one, where one of the arguments is \(\text{Leaf}\) and thus for which the \(\oplus\) operator is not applied.

The number of calls to \(\text{combine}\) during iteration \(j\) is \(|t_s_j| + |t'_s_j|\), where \(t_s_j\) is the list of single-node trees for the new elements in the window \(w_j\) and \(t'_s_j\) is the list of reusable subtrees of \(t_j\), that is, the list returned by \(\text{reusables } t_{j-1} w_j\). We have that \(|t_s_i| \leq \ell_{w_i} - r_{w_{i-1}}\) for \(1 \leq i \leq k\) and \(|t_s_k| = \ell_{w_j} - r_{w_{j-1}} + 1\). Hence, \(\sum_{i=1}^k |t_s_i| \leq r_{w_k} - \ell_{w_1} + 1 < n\). It remains to prove that \(\sum_{i=1}^k |t'_s_i|\), that is, the number of all reusable trees is linear in \(n\).

The structure of the remaining proof is as follows. We associate a position in the input sequence to each reusable tree. For each possible position, we bound the number of reusable trees that can be associated with that position.

We first state some properties about subtrees \(t\) with \(\ell_t = r_t\). We call these trees atomic. Furthermore, we say that a subtree is a left or a right subtree in some tree \(t\), if it is a left child or respectively a right child in \(t\). Let \(j\) be some
iteration, with \(1 \leq j \leq k\). In the tree \(t_j\), the right atomic subtrees are either subtrees of a reusable subtree, and thus subtrees of \(t_{j-1}\), or the subtree \(t'\) with \(\ell_t' = r_t' = r_{w_j}\). In fact, in all calls to \text{combine} \(t' t''\) except the first two, the tree \(t''\) represents the tree accumulated during the execution of \text{fold} _\text{left}, and thus cannot be atomic. In the first call, \(t'' = \text{Leaf}\). In the second call, \(t''\) is atomic iff \(r_{w_j} > r_{w_{j-1}}\). By a simple inductive argument over \(j\), it follows that any right atomic subtree \(t\) of \(t_j\) is such that \(\ell_t = r_t = r_{w_j}\), for some iteration \(i \leq j\).

For any reusable subtree, consider its left-most right atomic subtree (or the reusable tree itself, if it is atomic). By the previous paragraph, the position of this atomic subtree is the right margin of some window. Then the number of reusable trees is upper bounded by how many times the right margin of some window can be the position of the left-most right atomic subtree of a reusable subtree. We only bound the number of reusable subtrees that are not heads of the \(ts'\) lists. This is sufficient as there are at most \(k\) reusable trees that are heads, and \(k\) is linear in \(n\).

Consider the right margin of some window. Let \(w_i\) be the first window with this right margin. Suppose that \(r_{w_i}\) is the position of the left-most right atomic subtree of a reusable subtree \(t\) in \(t_j\), for some iteration \(j\). Furthermore, suppose that \(t\) is not the head of the list \(ts'\). We prove the following two properties.

(a) \(r_{w_{i-1}} < \ell_t \leq r_{w_i}\).

(b) For each position \(k\) with \(r_{w_{i-1}} < k \leq r_{w_i}\) there is at most one reusable tree \(t\) such that \(\ell_t = k\); the position of the left-most right atomic subtree of \(t\) is \(r_{w_i}\), and \(t\) is not the head of the list \(ts'_j\) for some iteration \(j\).

From (a) and (b) it follows that there are at most \(r_{w_i} - r_{w_{i-1}}\) reusable trees \(t\) such that left-most right atomic subtree of \(t\) is \(r_{w_i}\), and \(t\) is not the head of some list \(ts'_j\). Summing up over all \(i\) with \(1 \leq i \leq k\), there are at most \(r_{w_k} - r_{w_1}\) reusable trees that are not heads of the \(ts'\) lists. As \(r_{w_k} - r_{w_1} < n\), this concludes the proof, under the assumption that (a) and (b) hold.

We first prove (a). We have that \(\ell_t \leq r_{w_i}\) as the right atomic subtree at position \(r_{w_i}\) is a subtree of \(t\). For the sake of contradiction, suppose that \(\ell_t < r_{w_{i-1}}\). Then the atomic subtree at position \(r_{w_{i-1}}\) is a right atomic subtree in \(t\). As \(r_{w_{i-1}} < r_{w_i}\), this contradicts the hypothesis that \(r_{w_i}\) is the position of the left-most right atomic subtree in \(t\). Hence we have that \(\ell_t > r_{w_{i-1}}\). We have thus obtained that \(r_{w_{i-1}} < \ell_t \leq r_{w_i}\).

We prove (b) by contradiction. Suppose that there is a reusable tree \(t'\) in \(t_j\), for some iteration \(j' \neq j\), such that \(\ell_{t'} = \ell_t\), the position of left-most right atomic subtree of \(t'\) is also \(r_{w_i}\), and \(t'\) is not the head of the list \(ts'_j\). Say that \(j < j'\). As \(t'\) is not the head of the list \(ts'_j\), then \(t\) is a left proper subtree in \(t_j\). As \(\ell_{w_{j+1}} \leq \ell_{w_{j'}} \leq \ell_{t'} = \ell_t\), we have that \(t\) is a subtree of the reusable tree at the head of the list \(ts'_{j+1}\). Repeating the argument, it follows that \(t\) is a subtree of the reusable tree \(t''\) at the head of the list \(ts'_{j'}\).

As reusable trees do not overlap, it follows that \(t' = t''\). This contradicts the assumption that \(t'\) is not the head of the list \(ts'_{j'}\).

We now state the main complexity result.

Theorem 5. Let \(\bar{a}\) be a nonempty sequence of \(n\) elements in \(D\) and \(w\) be the list consisting of the windows \(w_1, \ldots, w_k\) with \(w_i \neq w_{i+1}\), for all \(i \in \{1, \ldots, k\}\). The function \text{sliding} _\text{window} \(w\) runs in \(O(n)\) time.

Proof. The running time of \text{sliding} _\text{window} is linear in the total number of calls to \text{combine} and \text{reusable}s. From the first paragraph of the proof of Lemma 4, the number of calls to \text{combine} is in \(O(n)\).

It remains to prove that the number of calls to \text{reusable}s is also in \(O(n)\). First note that \text{reusable}s calls itself recursively at most once. In the recursive call, \text{reusable}s \(s w\) inside the function \text{reusable}s \(t w\), the tree \(s\) is the child of the tree \(t\) that satisfies \(s_{\ell_t} \leq t_{\ell_t} \leq r\). Hence the number of calls to \text{reusable}s in \text{slide} \(t_{i-1} w\) equals the number of nodes on the path from the root of \(t_{i-1}\) to the root of the left-most reusable tree in \(t_{i-1}\). We call such a path the \text{call path} of an iteration.

We show next that the call paths of different iterations share no edges. For the sake of contradiction, suppose that there are two iterations \(i\) and \(j\), with \(i < j\), such that the call path in \(t_i\) shares an edge \(e\) with the call path in \(t_j\). Let \(t\) and \(t'\) be the two trees having as roots the two nodes of \(e\), with \(t'\) being a proper subtree of \(t\). Let \(s\) be the left-most reusable tree in \(t_i\). We have that \(s\) is a subtree of \(t'\), which is a subtree of \(t\), which is a subtree of \(t_j\). Thus \(s_{\ell_{t_j}} = t_{\ell_{t_j}} \leq t_{\ell_t} \leq s_{\ell_{w_{i+1}}} = t_{\ell_{w_{i+1}}} = s_{\ell_{w_1}}\). Since \(i + 1 \leq j\), all previous inequalities are equalities. In particular, \(t_{\ell_t} = \ell_{w_{i+1}}\). As \(s\) is a subtree in \(t_i\), it follows that \(t\) is a subtree of a reusable tree, and thus a subtree of \(s\). Hence \(t\) equals \(s\), which contradicts the fact that \(s\) is a proper subtree of \(t\).

We have shown that the total number of calls to \text{reusable}s is bounded by the number of edges created during the run of the algorithm. In each iteration, the number of new edges is linear in the number of new nodes, that is, linear in the number of calls to \text{combine}. As we have already observed, this number is linear in \(n\).

5. Optimality

We prove SWA’s optimality by contradiction. Assume that it is not optimal for the window sequence \(\bar{w} = (w_1, \ldots, w_k)\). Without loss of generality, we assume that \(k\) is the minimal number for which SWA is not optimal, i.e., for all window sequences \((w'_1, \ldots, w'_{k'})\) with \(k' < k\), SWA is optimal. Recall that \(a_1, \ldots, a_n\) are the elements in the input sequence \(\bar{a}\) and \(w_i = (\ell_{w_i}, r_{w_i})\), for \(i \in \{1, \ldots, k\}\).

In the following, let \(t_0, t_1, \ldots, t_k\) be the trees that are iteratively built by SWA for the windows \(w_1, \ldots, w_k\). Recall that \(t_0\) is the tree \text{Leaf}. Furthermore, let \(s_0, s_1, \ldots, s_k\) be
trees that are optimal for the windows \(w_1, \ldots, w_k\), where \(s_0\) is the tree Leaf.

We define the following measure. For \(t\) and \(t'\) trees, let \(\text{cost}(t, t')\) be the number of subtrees \(t'\) of \(t'\) with \(r_{t'} - \ell_{t'} \geq 1\) and there is no subtree \(t'\) of \(t\) with \(\ell_t = \ell_{t'}\) and \(r_t = r_{t'}\). Note that \(\text{cost}(t, t')\) is the number of \(\oplus\) operations that are necessary to build \(t'\) by reusing intermediate results from \(t\), where we assume that the value for each subtree \(t'\) in \(t\) is available, even when the actual stored value is None. In particular, \(\sum_{i=1}^{k} \text{cost}(t_{i-1}, t_i)\) is the number of \(\oplus\) operations that SWA performs and \(\sum_{i=1}^{k} \text{cost}(s_{i-1}, s_i)\) is the number of \(\oplus\) operations for the given optimal solution.

By the non-optimality assumption we have that

\[
\sum_{i=1}^{k} \text{cost}(t_{i-1}, t_i) > \sum_{i=1}^{k} \text{cost}(s_{i-1}, s_i).
\]

Since \(k\) is minimal, we also have that

\[
\sum_{i=1}^{k} \text{cost}(t_{i-1}, t_i) \leq \sum_{i=1}^{k} \text{cost}(s_{i-1}, s_i).
\]

Intuitively speaking, the non-optimality is caused when building the tree \(t_k\) for the last window \(w_k\).

In the following, let \(t_1, \ldots, t_p\), with \(p \geq 0\), be the reusable subtrees of \(t_{k-1}\). Furthermore, let \(t_{p+1}\) be the subtree in \(t_k\) for the new elements in the window \(w_k\), i.e., \(t_{p+1}\) stores the value \(\oplus_{i=1}^q (a_i)\), with \(\ell = \max\{\ell_{w_k}, \ell_{w_{k-1}} + 1\}\) and \(r = r_{w_k}\). Note that

\[
\text{cost}(t_{k-1}, t_k) = p + r_{w_k} - \ell
\]

and therefore

\[
\text{cost}(s_{k-1}, s_k) < p + r_{w_k} - \ell.
\]

This inequality can only hold when there are \(q\) subtrees of \(s_{k-1}\), with \(q < p\) that can be reused for building the tree \(s_k\). For \(p \in \{0, 1\}\), this is not possible.

In the remainder of the proof, we assume that \(p \geq 2\).

The following properties hold for the trees \(t_1, \ldots, t_p\). See also Figure 3 for an illustration.

(i) Each subtree \(t_i\) combines the new elements of a window \(w_{j_i}\), with \(1 \leq j_i \leq k - 1\). Note that the windows \(w_{j_1}, \ldots, w_{j_p}\) are different, in particular, we have that \(j_1 < j_2 < \cdots < j_p\). This is easy to see: if \(j_i = j_{i+1}\), for some \(i \in \{1, \ldots, p-1\}\), SWA would build a tree with \(t_i\) as a left child and \(t_{i+1}\) as a right child. This tree would be reusable when building the tree for \(w_k\). Furthermore, we have that \(\ell_{w_{j_1}} \leq \cdots \leq \ell_{w_{j_p}}\) and \(r_{w_{j_1}} < \cdots < r_{w_{j_p}} = r_{w_{k-1}}\). Finally, note that \(w_{j_p}\) can be the window \(w_{k-1}\).

(ii) Each subtree \(t_i\) is the right child of a subtree \(t_{i-1}\) of \(t_{k-1}\), where \(t_{i-1}\) is less than \(t_{k-1}\). The existence of \(t_i\) follows from \(t_{w_{k-1}} < t_{w_k}\). Otherwise, if \(t_{w_{k-1}} = t_{w_k}\), there is only a single tree \((p = 1)\), which contradicts the assumption \(p \geq 2\). Note that the trees are \(t_{i-1}, \ldots, t_1\) are subtrees of \(t_i\).

We further observe that for every \(i \in \{1, \ldots, p\}\), the tree \(t_i\) occurs also as a subtree in each of the trees \(t_{j_1}, \ldots, t_{j_p}\). To see this, suppose that \(t_i\) does not occur in \(t_{j_i}\), for some \(i' \in \{i, \ldots, p\}\). Let \(i'\) be maximal. Obviously, \(i' \neq p\) since \(r_{w_{j_p}} = r_{w_{k-1}}\) and \(\ell_{w_{j_p}} \leq \ell_{w_{k-1}}\). For \(i' < p\), \(t_{j_{i'}}\) would be a reusable subtree when building the tree \(t_{i'+1}\). SWA would build a subtree of \(t_{i'+1}\) with the left child \(t_{j_{i'}}\) and the right child \(t_{j_{i'+1}}\). This contradicts the fact that \(t_{j_{i'}}\) is the right child of the subtree \(t_{i'}\) of \(t_{k-1}\).

Next, we show that for each \(i \in \{1, \ldots, p\}\), there is a tree \(t_i\) with \(t_{j_i} = t_{i}\) and \(r_{s_i} = r_{t_i}\) that appears as a subtree in the trees \(s_{j_i}, \ldots, s_{j_p}\). Suppose that such a tree \(t_i\) does not exist. When building the tree \(s_j\), we must combine the new elements in the window \(w_j\). If we also combine it with old elements, no \(\oplus\) operations are saved. Furthermore, for \(i = 1\), we cannot reuse \(s_1\) to build \(s_k\). Overall, it is not more expensive to build trees with the claimed property.

It follows that \(s_1, \ldots, s_p\) are subtrees of \(s_{k-1}\) and therefore also subtrees of \(s_{k-1}\). If there is a subtree in \(s_{k-1}\) that has as children two of these adjacent trees, say \(s_i\) and \(s_{i+1}\), then for its combination at least one additional application of the \(\oplus\) operator is needed. Note that the tree \(s_i\) is a right child of a subtree of the tree \(s_{i+1}\).

It follows that if we have \(q\) reusable subtrees in \(s_{k-1}\) to build \(s_k\), then

\[
\sum_{i=1}^{k-1} \text{cost}(s_{i-1}, s_i) \geq (p-q) + \sum_{i=1}^{k-1} \text{cost}(t_{i-1}, t_i).
\]

From this inequality, we obtain a contradiction to the non-optimality assumption:

\[
\sum_{i=1}^{k} \text{cost}(s_{i-1}, s_i) = \sum_{i=1}^{k-1} \text{cost}(s_{i-1}, s_i) + (q + r_{w_k} - \ell) \geq (p-q) + \sum_{i=1}^{k-1} \text{cost}(t_{i-1}, t_i) + (q + r_{w_k} - \ell) = \sum_{i=1}^{k-1} \text{cost}(t_{i-1}, t_i) + (p + r_{w_k} - \ell) = \sum_{i=1}^{k} \text{cost}(t_{i-1}, t_i).
\]

6. Applications and Related Work

The presented algorithm can be easily modified to solve the online version of the problem, where the input sequences \(\bar{a}\) and \(\bar{w}\) are iteratively given. In iteration \(i\), the input is the window \(w_i\) and the remaining elements of the sequence \(\bar{a}\) up to \(a_{w_i}\). The output of the \(i\)th iteration is \(\oplus_{w_i} (\bar{a})\). In the online version of the problem, we do not restrict ourselves to finite sequences, i.e., \(\bar{a}\) and \(\bar{w}\) can be
infinite. However, we require that the windows still have finite size, i.e., the right margin r_w of a window w cannot be ∞. The presented algorithm, in particular its online version, has applications in areas like system monitoring (see, e.g., [4, 2]) and stream processing (see, e.g., [1]), where \oplus is used to aggregate values on windows sliding over data streams.

The **sliding-window-minimum problem** is a special instance of the problem considered in this article. It additionally assumes an ordering on the data elements from D and \oplus returns the minimum of its arguments. An algorithmic solution to this problem where the window size is constant and the window always slides by one over the sequence of data items is described by Harter [5]. As with SWA, Harter’s algorithm runs in $O(n)$ time and uses $O(m)$ space, where n is the length of the input sequence \bar{a} and m is the window size. Lemire [6] presents a minimum-maximum filter, which is similar to Harter’s algorithm. Lemire provides a detailed analysis of his algorithm. In particular, he shows that it performs at most three comparisons per element.

Approximation algorithms for computing statistics or evaluating aggregation queries over sliding windows in data-stream processing have received attention in the last decade. See [3] for a seminal paper in this area, in which the authors present and analyze an approximation algorithm for the **basic-counting problem**, i.e., for a given data stream consisting of 0s and 1s, maintain at every time instant the count of the number of 1s in the last k elements. When restricting the memory usage, their algorithm estimates the answer at every instant within a certain bound. They prove that their algorithm is optimal in terms of memory usage and show how their algorithm extends to richer problems.

References

